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Abstract

We demonstrate that support vector machines (SVMs) with selective kernel
scaling are an effective tool in discriminating between benign and pathologic
proteins. Initial results compare favorably against manual classification
performed by experts and indicate the capability of SVMs to capture the
underlying structure of the data. The data set consists of 70 proteins of human
antibody k1 immunoglobulin light chains, each represented by aligned
sequences of 120 amino acids. We perform feature selection based on a first-
order adaptive scaling algorithm, which confirms the importance of changes in
certain amino acid positions and identifies other positions that are key in the
characterization of protein function.

Introduction

The concurrent explosions of sequence and structural genetic data have not
been paralleled by an increase in the number of workers to correlate the data
and extract meaningful new information and knowledge. This extraction
process is critical to the way by which sequence and structure data contribute
to both basic and applied research. Clearly, as neither the human genome
project nor the emerging structural genomics program was possible without
the introduction of extensive automation of experimental methods, a similar
challenge is presented by the need to merge sequence, structure, and
functional data to construct an understanding of each protein system. Such
capability can be accomplished through bioinformatics tools that relate
extensive amino acid variation in a protein of known structure to achieve
automated prediction of a functional attribute.

As an initial step, we describe here an approach based on support vector
machine (SVM) technology with selective kernel scaling for the classification
of the k¥ family of human antibody light chains into benign or pathogenic
categories and for the identification of markers, i.e., the selection of features,
in the sequence of amino acids that are key discriminatory indicators. The
selection of SVMs technology is driven primarily by their unique ability to
construct predictive models with superior generalization power when the
dimensionality of the data is high, i.e., the number of input features is large,
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and the number of observations available for developing (i.e., training) the
model is limited. Their selection in this study is also attributed to their
property of being capable of adapting to the problem at hand by including
prior knowledge into the so-called kernel (mapping) function. We make use of
this property to selectively scale the importance of amino acids in the
sequence based on position variability at the germline level and position
discriminatory power obtained through post-processing. In this work, we
employ a version of the SVMIight code (Joachims, 1999) that we have
modified to include selective kernel scaling. The original code is available at
http://ais.gmd.de/~thorsten/svm_light.

System and methods

Data set and encoding scheme

In this study, we employ a subset of the human antibody light chain sequences
from patients with plasma cell diseases recently analyzed by Stevens (2000) in
which he identified four structural “risk factors” that appear to reveal most
amyloidogenic k1 light-chains. The employed data set consists of 70 k1 light
chain proteins. Of those, six proteins were known to be benign, 33 were
known to be pathogenic, i.e., from patients with myloidosis, and 31 were of
unknown pathology. Further analysis of the 31 unclassified proteins, including
the use of the SVM classifier itself to identify misclassified proteins, allowed
us to categorize 28 proteins into the benign class and the remaining three into
the pathogenic class. Therefore, the final data set is almost equally divided
(34/36) between the two classes, which avoids the construction of a class-
biased classifier.

The SVM classifier receives a sequence of amino acids representing a protein
as its input and predicts the class of the protein as its output. Because SVMs,
as well as other machine-learning algorithms, use numerical values as inputs,
they require the definition of encoding schemes. The encoding scheme for
protein sequences can be rather involved and can greatly impact the
performance of the classifier. One possibility is to encode each one of the 20
letters corresponding to the 20 amino acid types of a protein into a numerical
scheme representing known physicochemical properties of each amino acid
type (Baldi et al., 1998). Here, each amino acid is represented by a set of six
physicochemical properties (Lohman et al., 1994), hydrophobicity,
hydrophilicity, volume, surface area, bulkiness, and refractivity, scaled to the
[-1,1] interval. The primary structure of the k light chains is aligned to 120
amino acid positions, which are, therefore, represented by 720 (120x6) input
features to the SVM.
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Support vector machines

Support vector machines, a recently proposed supervised machine learning
technique (Vapnik, 1998), have been shown to be an effective bioinformatics
tool in multiple areas of biological analysis (Zien et al., 2000; Jaakkola et al.,
2000; Hua et al. 2001; Ding and Dubchak, 2001). Their unique ability to
develop models with superior generalization capabilities when the number of
input features is large compared to the number of training samples provides a
significant advantage over other supervised learning algorithms, including
neural networks (NNs). Unlike NNs where the number of model parameters
that require estimation grow exponentially with the number of input features,
the dimension of the SVM optimization problem is equal to the number of
training samples. This unique capability affords their use for protein
classification where the data sample is sparse and the dimension of the input
features is large. The use of NN, if attempted for this class of problems,
would result in an overfitted model with very poor generalization capability.

When used for classification, SVMs map the input space into a higher-
dimensional feature space that separates a given set of binary-labeled training
data with an optimal hyperplane. The optimal hyperplane found by the SVM
learning algorithm is the one that maximizes the separating margin between
the binary classes of the training data and is defined by a relatively small
number of Mg vectors in the input data set called support vectors. Given a
training set of M samples or input vectors {x1,x2,..., Xj,...,xpm} With known
class labels {y1, y2... . Vi,---,» YM}» ¥i €{*1,-1}, a new data point x is assigned a
label by the SVM according to the decision function

f(x)=sign (ZS yictik(xi,x) +b) (1
i=1

where k(x;, x) is the kernel function that defines the feature space, b is a bias
value, and q; are positive real numbers obtained by solving a quadratic
programming (QP) problem that yield the maximal margin hyperplane
(Vapnik, 1998).

One of the most common kernels is the polynomial kernel,
kp(xi,xj)=(a+bx;-x;)", where a, b, and d are real-valued constants. A
special case of this kernel is the linear kernel obtained when a=0 and b=d=1.
The kernel function, however, can be customized to the problem at hand Zien
et al.,, 2000). This unique feature of SVMs gives us the ability to implicitly
incorporate prior knowledge, such as known physicochemical protein
properties, into the mapping function by properly engineering the kernel
function.

Selective Kernel scaling

We customize the kernel function so that each component or input feature
variables / of the input vector i, x{ , /=1,2,...,720 and i=1,2,...,M=70, could
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have a different scaling factor related to its importance to the classification
problem. The modified kernel has the form ky(x;,x;)= k(Sx;,Sx;), where S is a
diagonal matrix of scaling factors. Here, we employ equal scaling for each
group of six properties representing each amino acid type, and position-
dependent scaling, based on the two schemes described below, to each of the
120 positions in the amino acid sequence.

Germline scaling: The first selective kernel scaling, termed germline scaling,
is based on the assessment of the significance of the variability at specific
positions in the amino acid sequence. All humanx light chains originate from
a repertoire of about 14 inherited or germline genes. When these sequences
are compared, 40 sites are invariant at the genetic level while other positions
exhibit two or more alternative amino acids. We assume that positions that
are conserved at the germline level would tend to have a higher probability of
significantly affecting protein fold and/or stability, and therefore, lowered the
weights assigned to positions of amino acid that exhibit variability at the
germline level. Accordingly, the germline scaling factor for position n,
n=1,2,...,120, is computed as 1/N(n), where N(n) is the number of different
amino acid types that appear at position n in the germline sequences.

Adaptive scaling: The second scheme, based on the post-processing of the
classification problem, is adaptive and iteratively modifies the scaling factor
of each input feature variable based on its affect or sensitivity on the
classification. The sensitivity index SI, of the classification function to a
change in component ¢/ of input feature vector i is to the first order of
approximation given by (Evgeniou, 2000)
Mg My ) )

d_f/ :Z zOtj N d(k(xi, x;j)) . @)
dy; | T3

My

SI[ zz

i=1

dx/

1

1
To compute the scaling factor of each group of six input feature variables
representing each amino acid in the sequence we add the SI inEq. (2) over the
six properties, normalize the cumulative SI to the [0,1] interval and take the
square root. When germline scaling is used in conjunction with adaptive
scaling, the effective scaling factor for position n is taken as the square root of
the product of 1/N(n) times the normalized cumulative SI value. The scaling
factor provides a measure of the sensitivity of the classifier to perturbations of
each amino acid position, and therefore, it is used here as a metric for feature
selection.

Simulation results

Our method is tested in a number of simulation runs with the SVMlight code
(Joachims, 1999) modified to include the scaling kernel schemes described
above. The results are compared against a manual classification approach
(Stevens, 2000). Three measures of accuracy, classification error (E), recall
(R), and precision (P), are used to assess the performance of the SVM
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classifier for the testing data
FP +FN TP

E = x 100% R = ——— x100%
TP +FP+TN +FN TP + FN

P = l x 100% 3)
TP + FP

where TP is the number of true positives, i.e., pathogenic proteins, FP is the
number of false positives, TN is the number of true negatives and FN is the
number of false negatives.

The classification results using the leave-one-out cross validation procedure
and a linear kernel function with different position-dependent scaling schemes
for the input features representing the sequence of amino acids are presented
in Table 1. The results of applying germline sequence scaling based on «a
priori knowledge about the significance of each specific amino acid mutation
derived from conservation at the germline level achieved 80% classification
accuracy (or alternatively, 20% classification error), 80% recall accuracy, and
80% precision accuracy. The combination of the germline sequence scaling
followed by adaptive scaling employing the first-order sensitivity index inEq.
(2) yields significant improvements (except in recall) ranging from 13% to
30%, confirming our hypothesis that the use of adaptive scaling results in an
improved classifier.

Table 1. Leave-one-out classification accuracy based on several scaling
schemes of the input features

Scaling scheme Classification | Recall (R) | Precision (P)
Error (E) (%) (%) (%)

Germline sequence scaling 20 80 80

Germline sequence scaling followed by 14 80 90

adaptive scaling

Randomly assigned classes with germline 52 58 46

sequence scaling

Randomly assigned classes with germline 51 38 46

sequence scaling followed by adaptive scaling

Heuristic classification 15 94 79

To determine if the SVM was indeed learning the underlying structure of the
data we repeated the simulations with randomly assigned labels for all 70
samples. The hypothesis being that, if the classifier was indeed learning the

Proceedings of The International Conference on Bioinformatics 2002




0-BH-02

underlying structure of the data, as opposed to learning the structure of
random data, its accuracy with randomly assigned labels should be about 50%.
A large accuracy would indicate that the SVM is learning to explain noise.
The results using germline sequence scaling are illustrated in the third row of
Table 1, which indicate an overall classification error of 52%, clearly showing
that the SVM is capable of capturing the underlying structure of the amino
acid sequences.

These simulations also serve to verify that the proposed adaptive scaling
kernel algorithm does not result in an overfitted model that improves the
explanation of the training data alone without improving the generalization of
the classification model. When adaptive scaling was employed to the samples
with randomly assigned labels the classification error remained essentially
unchanged while recall decreased, see row four in Table 1. An increase in the
classification accuracy would have indicated that adaptive scaling is forcing
the model to learn the structure of random data.

Figure 1 shows the normalized effective scaling factors aggregated over the
entire data set for the 120 amino acid positions in the sequence. They can be
employed as metrics for feature selection as they provide a measure of
relevance of the contribution of each amino acid position to the classification.
Hence, amino acid positions with large scaling factor values are key in
discriminating between benign and pathogenic proteins. Indeed, each of the
three amino acid positions with large effective scaling factor values, Pro40,
Arg6l, and Pro95, has significant structural significance. For instance,
Stevens (2000) has inferred that the interaction of Arg6l with Asp82
contributes significant free energy to the stability of the protein and any
substitution of Arg61 is destabilizing and strongly associated with amyloid
formation.

The capability of the scaling factors to perform feature selection can be
validated by retraining the SVM classifier with the three key amino acid
positions removed. By doing so, the classification accuracy deteriorated,
E=37%, R=63%, and P=63%, clearly indicating that the scaling factors based
on the SI in Eq. (2) provide a good mechanism for feature selection.
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Figure 1. Positional relevance of the amino acid sequence to classification
accuracy based on mutations at the germline level and first-order sensitivity
index

To investigate the stability of the selective kernel scaling algorithms with
regards to kernel forms we repeated the simulations using a polynomial kernel.
Numerous simulations involving various changes in the three parameters (a,
b, and d) of the polynomial kernel resulted in identical classification accuracy
as the ones obtained with the linear kernel. Furthermore, comparisons of the
effective scaling factors indicate only minimal variations around the
distribution depicted in Figure 1. The importance of the same three amino acid
positions, Pro40, Arg61l, Pro95, was unmistakably distinguished in every
simulation, which serves to demonstrate that the adaptive scaling algorithm is
inherently stable, independent of kernel form.

The last row in Table 1 shows the results of a heuristic classification based on
manual analysis of the data (Stevens, 2000). Because all 70 samples were used
to infer the heuristic classification rules, we cannot assess the generalization
ability of the approach and perform a consistent comparison with the SVM
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results. Nonetheless, the heuristic approach provides for a semi-quantitative
comparison, which indicates a favorable performance of the SVM algorithm.

Conclusions

Preliminary results demonstrate the ability of the Support Vector Machine
algorithm with selective kernel scaling to discriminate between benign and
pathological immunoglobulins. Evaluations using the leave-one-out error
estimate compares favorably with the accuracy obtained through manual
heuristic classification performed by domain experts. Simulation tests where
the protein labels, benign and pathological, are randomly assigned to the data
are used to verify that the modified SVM is capable of capturing the
underlying structure of the data. SVMs provide an effective inductive tool for
developing protein classification models where the data is sparse and the
dimensionality of the input features is large.

The use of adaptive scaling based on first-order sensitivity analysis is shown
to be a particular important method to improve the classification accuracy and
allow for feature selection. It improves classification error by 30% and
confirms the importance of certain amino acid positions in the light chain,
such as Argb61, and identifies new amino acid positions, such as Pro40 and
Pro95, which contribute significantly to determining protein stability,
previously shown to be the principal determinant of the pathological attribute
of light chain pathology (Raffen et al., 2000). The approach is stable in
regards to kernel forms, providing the same performance improvements
independent of the type of kernel used.

In future studies, we will explore new algorithms for scaling the input feature
variables and performing feature selection. In addition, we will investigate
ways in which the information content of the three-dimensional protein
structure can be implicitly embedded in the scaling procedure. We believe that
it is imperative to combine protein primary structure information with tertiary
structure information to characterize the protein functional behavior—a
critical feature ignored by simple analysis of strings of amino acid labels.

Acknowledgements

The authors want to express their gratitude to T. Joachims for providing
access to the SVMlight code. The first author was supported in part by the
Combat Casualty Care and Military Operational Medicine research programs
of the U.S. Army Medical Research and Materiel Command. The last author
was supported by the U.S. Department of Energy, Office of Biological and
Environmental Research, under contract W-31-109-ENG-38 and by USPHS
Grants DK43757 and AG1001.

Proceedings of The International Conference on Bioinformatics 2002



0-BH-02

References

Baldi,P. and Brunak,S. (1998) Bioinformatics - The Machine Learning
Approach. MIT Press, Cambridge.

CarrelLR.W. and Gooptu, B. (1998) Conformational changes and disease
— serpins, prions, and Alzheimer’s. Curr. Opin. Struct. Biol., 8, 799-809.

Ding,C.H.Q. and Dubchak,I. (2001) Multi-class protein fold recognition
using support vector machines and neural networks. Bioinformatics, 17, 349-
358.

Evgeniou,T., PontilLM., Papageorgiou,C. and Poggio,T. (2000) Image
representation for object detection using kernel classifiers, 4th Asian
Conference on Computer Vision, January 9-11, Taipei, Taiwan, Paper ACCV-
198, Poster Session.

Hua,S. and Su,Z. (2001) A novel method of protein secondary structure
prediction with segment overlap measure: Support vector machine approach.
Journal of Molecular Biology, in press.

Jaakkola,T., Diekhans,M. and Haussler,D. (2000) A discriminative
framework for detecting remote protein homologies. Journal of Computational
Biology, 17, 95-114.

Joachims, T. (1999) Making large scale SVM learning practical. Advances
in Kernel Methods - Support Vector Learning, B. Scholkopf, C. Burges, and
A. Smola (ed.). MIT Press, Cambridge.

Lohman,R., Schneider,G., Nehrens,D. and Wrede,P. (1994) A neural
network model for the prediction of membrane-spanning amino acid
sequences. Protein Science, 3, 1597-1601.

Raffen,R., Dieckman,L.J., Szpumar,M., Wunschl,C. Pokkuluri,P.R.,
Dave,P., Wilkins,S.P., Cai,X., Schiffer,M., and Stevens,F.J. (1999)
Physicochemical consequences of amino acid variations that contribute to
fibril formation by immunoglobulin light chains. Protein Science, 8, 509-17.

Stevens,F.J. (2000) Four structural risk factors identify most fibril-
forming kappa light chains. Amyloid: Int. J. Exp. Clin. Invest., 7, 200-211.

Vapnik,V. (1998) Statistical Learning Theory. Wiley, NY.

Zien,A., Ratsch,G., Mika,S., Scholkopf,B., Lengauer,T. and Muller,K.R.
(2000) Engineering Support Vector Machine kernels that recognize translation
initiation sites, Bioinformatics, 16, 815-824.

Proceedings of The International Conference on Bioinformatics 2002



